We are now in a position to analyze the control problem for the

system (3. 3), (3.11), (3.13) with the aid of the duality results embodied
in Theorems 2.6 and 2.7 of the preceding section. According to those
theorems we may study the control problem, in this case that of steering

: * %
from w e LZ([O,I]; E") to w, = 0, by enquiring whether {C ,S ,Z,Y,X}

1

is distinguishable or observable, respectively, i.e., whether (since

’

¥
D A (1) is nonsingular in (3. 28))

vi,t)=0, te[0,T]= v(x,0)=0, xe [0,1] (3.29)

or, for some K>0,

3
v, ol . 2 Klve-, ol i, (3. 30)
K ([0’ T];E ) L ([O, 1];E )
respectively.
We will first consider the case wherein
Sk
B () = &%), xe [0,1] , (3. 31)

which, of course, includes the case where A is constant and B =0 .
Defining the characteristics ck(x, t) as before we see that for (x(t),t)

on a characteristic Ck we have

k k

d k ov ov
gt v (K, 1) = S (x(t), 1) - A (x(t) = (x(t),1) = 0,

. ov v :
since (3.23) gives 5% - A(x) B - 0, and A(x):dlag()\l(x), o aty xn(x)) .

k
This means that v (x(t),t) is constant on a characteristic Cps thus

greatly simplifying the behavior of the solution v .
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L
Proposition 3. 3. Far &= ptl, P2, ..., P¥g & Ti be the unigue

positive number such that the solution x(t) of

dx
3o = N0 x(0) =1

satisfies x(T:) =0, and for j=12,...,p let x(TJ) =R o

}=52,...,p let ij be the largest integer in the set {p+l,..., p+q}

i
b %
such that the component (Do)jj of the matrix DO (cf. (3.24)) is non-

zero if such an ij exists. Define

(
2 =

Lok Eo. i exighs
1 J A R

“ 41
T =
J

: ) otherwise,

LJ

and let

Po= max v
ie {p+l,..., ptq}
Je {2, i, D8

Assuming (3. 31), if T< TO the distinguishability property (3.29) (and

hence the observability property (3. 30) also) cannot hold.

The basic idea here is the construction of paths whereby "information"
can be sent from the terminal state ¥ = v(-, T) to the initial state

M v(+, 0) without encountering the boundary x =1 where the obser-

k4 +
vation D A (1) v (1,t) is taken. We will analyze only the case where,

j o we have T, = 'I‘: + Tj- . Referring to Fig. 3.3
0 j 0
0

for some jo and i

we note that if T < TO

=35
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¢, (0,T-T
i

il
1o j

0

t=0

Figure 3. 3. Diagram for T < TO

the characteristic cj (L, TO) meets the line t =T at a point (&, T),
0

¢ <1. We define a terminal state v(-,T) = v, by

1

0 if k] orif k=i and

0 0
v’j(x) = ¢ xd (¢,1];

1 if k=1, and xe (£,1] .

we see that for t >T- 1

j j

the only non-zero part of the solution v is the component v 0, which

k
Since v is constant on characteristics Ck

0

equals 1 in the strip between cj (ely To) and cj (I, TY (and is equal to
0 0
zero outside that strip). At the boundary x = 0 we have

=36
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K -
v (0,8) =0, t>T -T . ki, 2y

]
o

vo,)=0, t>T -T°, k=12...,p k#j

!
o

j
vO(O,t)El, T-T, <t<T0—T._
Yo ’o

kK
We now consider components v , ke {p+l,...,p+q = n} related to
j
v H at x = 0 by the boundary condition (3.24). Since A(0) is diagonal

~ k
the precautions taken in defining the Tj show that those v related

& 0 R

j
the segment x =1, 0<t< TO’ are related to v' 0 by a zero coefficient

to a characteristic c (0,s), T - Tj- <s<T -T , whichcould meet

-1 X% e
in the matrix (A+(0)) D0 A (0) . This enables us to conclude
+
V(LB =0, te [0 P

On the other hand we shall have
i1 i,
j MR LR
v %%, = %) by Ao, °
To

between the characteristics ci (0, TO & TJ_- Y = r:i (1,0) and ci (0, T -T; )

Jo 0 jo Iy 0

so
¥y v(-,0) # 0

and thus (3.29) does not hold. The other possibilities for T0 are

analyzed in a comparable manner.

For a positive result, we have

Proposition 3.4. For i = p+l, p+2, ..., ptq let ji be the largest

Sk

integer in the set {l, by owsg p} such that the component (Do)j1 of the
)|
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S nk : ; R
matrix DO is non-zero, if it exists. Letting Ti’ o= il o e

T, i=12,...,p, be defined as in Proposition 3. 3, let

- =
~ T i T' ’ j' .exj'___ig_s.’
T b TS
k ‘
Ti otherwise ,
and let
T, = max {Ti, i {3, 32)
ie {p+l,...,p+q}
jeil 2, .. p)
If T>T, we have observability in the sense (3. 30).

1

Remark. The time T0 of Proposition 3. 3 does not, in general, agree

with the time T1 defined here. This raises the question, unresolved

at the moment, concerning the identification of a "critical time" TC

such that observability holds if T > TC and does not hold if T < Tc ;
Such a critical time Tc can readily be shown to exist but no satisfactory

characterization of it is available at this writing.

Sketch of Proof. Suppose that

s

g v, = v(0,T) # 0

Suppose, then, that xe (0,1) and k are such that
k
v (x,T) # 0 . (3. 33)

If ke {1,2,...,p} the characteristic € (%, T) L7y, 0T, and
then vk(l, T) # 0, sothat v (I, 7) # 0. Since (3.25) is satisfied at
(1, ), we will have

=33




g e

b
v (L, Ty £ 0
On the other hand, if ke {ptl,...,pt+qt then, since T> {‘k we will
have the characteristic wk(x,'l‘) meeting x = 0 at some point Tl ;
, k o B -
Q< m <T and v (O, Tl) # 0 . Since (3.24) is satisfied at x = 0, some
% }; * 3
component (D) of D_ is non-zero and
0'¢ 0
f ]
v (0, Tl) %0

b -
Now (3. 32) shows that T, >T. + T

1 « § and since T >T

E cf(O, Tl) meets

: : d . . {
x =1 at a point (], TZ) with 0 < TS I' and, since v is constant on

b

4
r:[(O, Tl), we have v (1, 7)) # 0. Then, as before

’

4
V(L T&) =0

In either case, by letting x vary in some non-null subset of (0, 1)
where (3. 33) holds, we see that vL(l, -} is not the null element of
LZ([O, T} EC’) and distinguishability, (3.29), has been proved. A
slightly more careful analysis, keeping track of the norms involved,
establishes observability, (3. 30).

The duality theory of Section 2 then gives

Corollary 3.5. For the hyperbolic control system (3. 3), (3.11), (3.12)

there are positive numbers TO and ’I‘l such that the problem of control

2
from an arbitrary W € L (o, 1] En) to w, = 0 during [0, T] is not

solvable if T < TO and is solvablf—?_if__ T2k

provided (3. 31) is valid.

1’

Our next task is to see if the restriction B (x) = A(x) can be re-

moved. This is done in two steps. One first considers the case wherein

« 30




B(x) - A'(x) is diagonal (i.e., B(x) is diagonal, since A(x) is already
in that form). Here the proofs of Proposition 3. 3 and 3.4 are virtually

k S
unchanged. Although the v are not constant on characteristics Ck "

they nevertheless satisfy uncoupled scalar linear homogeneous equations

k
dv RO ok k
S (x(0), 1) = (B (0 - A), v (x(D), 1),

s o2 i

and hence there are positive po, pl such that
vk(x(t) t)
R e Yo (3. 34)

v (x(),1)

whenever (x(t),t), (x(f),?) lie on the same characteristic Cy - The

relationship (3. 34) is clearly just as useful in the proofs of Propositions
k
3.3 and 3.4 as the constancy of v on ck which we assumed there.
The next steps are somewhat more subtle and are in the nature of

a perturbation argument. We have to divide our result into two parts.

Theorem 3. 6. For the control system (3. 3), (3.11), (3.13) and associated

dual linear observed system (3.23), (3.24), (3.25), (3.28) we do not

have exact controllability to w. = 0 and observability, respectively, if

1

T < T0 . (However, this conclusion is not shown to extend to lack of

aprroximate controllability and distinguishability, respectively.)

Sketch of Proof. Let the operators S and C be defined as in (3.27),

(3. 28) for the general control system and let the notations Sd and Cd

«4()=




be employed for the operators related to the corresponding "diagonal”

system wherein (3.23) is replaced by

ov ov &
37 - A 5 H(B(X) - AX)N VY,

where (B*(x) - A'(x))d denotes the diagonal part of that matrix. A

somewhat involved, but not conceptually difficult, argument allows one

%

to see that the operator differences SZI‘ = S:j, C:': - Cd are both compact.

When T < TO’ as in Proposition 3. 3, a slightly more careful

analysis shows that there is an infinite dimensional subspace, call it

Z,, of 14([0,1]; E®) such that

v,

Hs: ;

_>_K“v” sio e (3. 35)

PR T ety e D

for some Kl > 0, while

C v, =0, v.eZ. . (3. 36)
With (3. 35), (3. 36) true, it is a standard
exercise in functional analysis to show that we cannot have (3. 30) if

* %

8 - SC; and C* - C; are both compact. The conclusion that we do

not have observability of (3.23) - (3.28), and hence (exact) controllability
of (3.3); (3. 1), (3. 13) for < T0 follows. Note however that one can-
not show that (3. 29) is false.

The general controllability result for T > T, is considerably more

1
complicated. Before stating the theorem we present an example to show

that this should, indeed, be the case. Consider the two dimensional

system

"




1 1
() a9
=t D=0, exx<l 120 (3. 37)
v v

ot

with boundary conditions

VI(O,t) = 0, vZ(l,t) =0 (3. 38)

and observation

sk

¢ vy = C v, m = v, ) e P[0, 1] (3. 39)

Here one readily verifies that we have observablility for T > Tl = 1. Indeed,

no matter what Uy = v(+,1) may be, we have

Thus the observability condition (3. 30) is satisfied, as it were, by

"default" on the part of S* rather than by any "strength" of the ob-

servation operator (3. 39). It is perhaps not surprising, then, that a

small perturbation in (3. 37) yields a system which is not observable.
Indeed, for & >0, let (3.37) be perturbed to

1 0 9 1 1

ORI ] v 0 &, v
v v v

with the boundary conditions (3. 38) and the observation operator (3. 39)
being retained. One may then verify quite readily that if we give the

terminal state

vix, 1) = £ (1-x), Vix,1)=1, 0<x<1
1 2z oy :
the effect of the coupling of v- to v in (3.40) is to give
1 £
viht)=0, 0<t<l

=42 =




that Cﬁvl =0 . But

1 1 s %
vix,0)=v(0,x) - [ edt=-Z

%
2

1 %
so v (x,0), and hence S v, = v(

A0 ) 0) # 0 . It follows that (3. 40),

)
(3.38), (3.39) is not even distinguishable on [0,1], for any ¢ > 0 .

We first attempt to rule out this sort of behavior by strengthening
S . This we do by assuming the system (3. 3), (3.1l), (3.12) to be time
reversible, the requirements for which we have set down earlier. Then
the operator (3. 14) generates a group S(t) for te (-2 o) and S, S*

are invertible. In fact, with S, as defined earlier, we shall have, for
(

!
2
v, € L7([0,1]; B
s: v > M.l | (3. 41)
I S € Z
R e R e
Theorem 3. 7. et (3. 3), (3.11), (3.12) be time reversible (see note in

statement of Theorem 3.1) and let T > T1 as described in Proposition 3. 4.

Then there is an ¢ >0, depending only on T, A(xX), the diagonal

elements of B(x), and the matrices C Gy B (el (3211 (3.12), (3.13))

0>

such that if each off-diagonal element b;(x), i+ j, satisfies |b;(x)i e

x e [0,1], then the system (3.23), (3.24), (3.25), (3.28) remains ob-

servable on [0, T] (equivalently (3. 3), (3. 11), (3.13) remains controllable

on [0, T]).

Sketch of Proof. Since we have observability for the diagonal system

we have

ad Ja




route, Theorem 3.2 followed by the observation that solution of (4.24) is

equivalent to solution of the control problem, provides another way of
establishing the existence of biorthogonal functions pl satisfying (4.17);
the functions pl are precisely the controls steering the zero initial

state to the final state

1( 2) 00 K
W i )-I\ _A «

=g, ¢ =g 6, @
2 Pt g s Ml S
(w (551 2) =.

Thus the relationship between control theory of hyperbolic systems and
harmonic analysis is a two-way affair. One can begin with results in
either field and infer corresponding results in the other. In Section 8
this program will be carried out in connection with a more complex
control situation.

Not all control problems for the scalar wave equation (4.4) can be

treated in the context of (4.1). If we take (4.4) with boundary conditions

w(0,t) = w(l,t) = 0, for example, the resulting moment problems involve
kmit ’ ' LA :

only e , k=41, #2, ...; the function 1 is missing. Control is

not then unique even for T =2 . If we take a,=23 = 0, bO = b1 =1

in (4. 5) we have a multiple zero eigenvalue and the moment problems

kit :
involve the functions 1,t, e - , k=%, 22, ... . These functions are

not independent in LZ[O,Z] and control is possible only if T >2 . (The

9
eigenstate w = 1, _é_vtv_ = 0 is suppressed in passing from (4.4) to (4.1)
3 9
via w1 = —8%\’ 3 w2 = _é%_ .) These and other problems of the same sort

are discussed in [87]. There are a large number of open questions
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associated with more complex systems wherein the eigenvalues of the

generator of the semigroup occur as several sequences of the type (4. 9)
but with various asymptotic intervals between the members of the individual
sequences - or the eigenvalues may occur in clusters with the clusters
themselves having an asymptotic separation. Some rather nice theoretical
results have been obtained along these lines by Ulrich [107].

We have noted earlier, in Theorem 2.9, that if the finite dimensional
linear control system (2.1) is controllable then not only is it stabilizable
but the eigenvalues of the closed loop matrix can be selected at will by
appropriate choice of the feedback matrix K. We are going to complete
this section by describing a comparable result for the system (4.1), (4.2)
(or, equivalently, for (4.21)-(4.23)). To motivate the procedures which
we will use, we briefly review the proof of the "spectral assignment"
property claimed in Theorem 2.9. We do this only for the case of a
scalar control u; the case uce E™ is fully treated in [6], [111].

Thus we consider the system

% =Bx +bu, xeE", ueE (4.26)
and the closed loop systems

% = (A+ bk )x (4.27)

obtainable from (4.26) with use of linear feedback relations

wekx ke¢E . (4.28)

We assume (4.26) to be controllable. Then

0=




C=gA b, B B, xeep Bby b)

is a nonsingular n Xn matrix. It bears a definite relationship to the
operator C defined just prior to Definition 2.4, representing, as it
does, a sort of "control to state” map. If one considers distribution

valued controls with {0} as support,

k
(60 is the Dirac "delta function" with {0} as support and 60 is its

k-th derivative in the sense of the theory of distributions) and assumes

X(O-) =)
one may readily verify that
=i
4
Bl L) e 2 ~n P
XO+)=A BL + & BL +...*BL =C
=T

Since C 1is nonsingular it can be used to transform the dynamical

T S ; oL T
system (4.26) in E  into another system in the space E consisting

of vectors

Indeed, putting

) [




(4.26) becomes

i
>
el
+
o
=

< il -~ =
£t =€ ACL £C 1bu = (4.29)

Since the last n-1 columns of AC agree with the first n-1 columns

of C and since b is the last column of C, A and b must take the

form
-a1 ) 0 0 0 0
-a.2 0 0 0 0 0
A = . b = en = : (4. 30)
-a 0 0 0 1 0
n-1
-an 0 0 0 0 = 1 3

where a_, a are such that

P’ =

a
n-1’ "n

T R R G S
1 =1 n

290

(and hence are by the Cayley-Hamilton theorem, the coefficients of the
characteristic polynomial of E (and A)). The equation (4. 30) constitutes

the control normal form for the system (4.26).

The next step is not particularly easy to motivate a priori. We let

e i 1

e




Evidently @ is nonsingular and setting

L=0at

one may verify with a little calculation that (4.29) is transformed to

£ =3g+enu : (4. 32)

en, as in (4. 30), remaining invariant and

0 1 0 0
0 0 1 0
A= : : 5 & 3 (4. 33)
0 0 0 1
_an -an-l =" by _al

The form (4. 32) is known as the control canonical form for (4. 26).

In (4. 32) the effect of feedback

% Ask el o
we B e fs oty (4. 34)
is immediately visible. In the closed loop system

afl 3w

. T — J




the matrix has the form

o

—

o
—

0 0 0 |
Are £ =
n
0 0 1
-an + kl -an_1 + k2 -al+kn / .

A ES
The characteristic polynomial of A + er1 1% is

n N Rl A A
P(N) = M+ (3 -kn)x taoot(a 1-k2)>\+(an-k

= 1)

and, since its coefficients can clearly be selected at will by appropriate
choice of % in (4. 34) (and hence of k in (4.28)) its zeroes can also

be selected at will, thereby providing a proof for Theorem 2.9 in the

case of a scalar control.

To give some meaning to ®, shown in (4. 31), let us note that,

with
O, s 0 1
0 0 1 0
5 - g : . % i
0 1 0 O
1 0 . 0 O

we have T =X . and (with denoting complex conjugate)

A % ~ T ~
A =3 A =2 K2 . (4. 35)

=14 =




Suppose A has eigenvectors Vl’ v

29 sees Vo and eigenvalues
~ 3%
Hps Bos cony B Then A has as its eigenvectors the dual vectors
o

i =
W) Wy veey W for which Wi’ w.) - }"j and A w, =pn, w,. Then

SAZ(EV)=ZAV.=p. ZV, . (4. 36)
Combining (4. 35) and (4. 36) we see that

A =v. =4 TV,
e j

s
x

and we conclude that = ‘_,j is an eigenvector of A corresponding to
the eigenvalue ;j « But, since

A Sk~ 3k b2 _l
A= ® A (@)

the eigenvectors of 2" have the form @ wj, where the Wj are the

eigenvectors of 3 . Hence
® w,=p,T vV, (4. 37)

%
for some ‘3j + 0, i.e., @ takes the vector s of the dual basis

(w . Wn) into a scalar multiple of the "order reversed" complex

P Wos oo
conjugate of the corresponding element vj of the original basis
(vl, Vs veey vn) . This will be significant in a later comparison.

Our next objective is to develop, for (4.1), (4.2), a control canon-
ical form analogous to (4. 32), (4.33) and playing a comparable role with

respect to spectral determination via feedback. Let wk(t), ~0< k <90 ,

denote a solution sequence of (4.13), i.e.,

~l

N
|




dwk

S=——— =0

dt

K Wk + gk u(t)

lying in G (cf. (4.20) ff) for all t - which is true if it lies in G for
any t. We use the control-to-state map C exhibited in (4. 20) to de-

fine a new variable Z = Z {t; 7) :

= 2 (rk(Z-T) -
w, (1) = (C L(t, ), (1) = foe g, L(t, Tyt . (4. 38)
The inverse map, from (4.18), is
~ ; Wk(f)
E(t, 7) = p (T) . (4. 39)
mues - T K

Our task now will be to see how the dynamical equations (4. 13)
for the wk(t) are transformed into dynamical equations for Z(t, T)
under the above transformation. Before doing so, however, it will be

useful to consider a certain relationship which is satisfied by the ex-

e
ponential functions e . If we had Sl a + kmi we would have
Ukz (a+kmi)2 2a a 0Fko
e = e =e (=e e )
and every linear combination
O'kt
r(t) = E r, ©
k
would likewise satisfy
%
r(2) = % r(0)

Let us form the function

T b=




o o} o 2 -
k 20
P = ) (e ~e" Y pt) . (4. 41)
k:-’f,\ J
. T 1 2 1
0,2 (atkmits (3))2 6G)=e s ) = e’“ +o)
: k k 2a ke k k
Since e =e =e. e the
2 g, (2-+)
series (4.41) converges and pe L [0,2]. Since (e 4 P:) 2 =GRS
J'L%0, 2] j
2 o'k(Z- T) 2 aka 20 crk(Z-T) crkZ 20
e pl(T)dr = f (e -e )e pk(T)dT = e - ©
0 0
Each linear combination (4. 40) with T, =@ + kmi + @(!k—) consequently
satisfies
| 20 2__
{ r(2) =" r(0) + [ p(2-7) r(r)dr
| 0
ﬁ_ 5
| To find the dynamical equation satisfied by ¢ (t, T) we differentiate
(4. 39) formally and then use (4.13) and (4. 38):
. s
AL (t, 1) dt
—tl s = — =
ot Z gk pk(T)
k==
© o, w (t)+g, u(t)
= Yy k k k P (T) =
ko 08 9y k
%0 2 o'k(Z-T) N 0
=3 w | e Lt mdr B () +u) ¥ B (T)
k:-:l) 0 k:_oo
= (integrating by parts)
%0 2 o, (2-T) =
5 e,
o Tl ex 20D gy 5
la oT k
k=-0 0
i 0 Zcrk i ” ot
| b (e T L(t,0) - L(t,2) +u(t) B(T) (4.42)
| k=-20
|

aff




~

2
Adding and subtracting e & Li(t, 0),

o

oo
The second sum here is just a multiple of Y

(e““T(t,0) - T(t,2) + u(r))

i

the second sum above becomes

(4.4

pk(f)

pk(r) which can be

}(: =00

shown to be the distribution §&§(2-7) . We eliminate it by requiring

~ 2a ~

L(t,2) =e L(0)+ u(t)

From (4. 41) the first term in (4.43)

now (4.42) gives

B et /el

Iisiseen tolbe just p(w) (L, 0) .

o, (2-7) _—
- w JeF gkd;(;z:_)d”
at (t 0
e X Py(™)
k= -0 gk
+p(T) C(t,0).
1 .8 . @t

But the sum above is just (see (4. 38) and (4.39)) C C(=) = —=

we have

The equations (4.45) and (4. 44) constitute the control normal form for
(4.13) (hence (4.1), (4.2) and should be compared with (4.29), (4. 30).
The above derivation is entirely formal.

making use of the observation normal form for the dual observed system.

To pass to the control canonical form we employ a transformation

+p(m) &(t,0) . (4.45)

(4.44)

In [95] it is justified by

——




(4.46)

¢ = @t of "convolution type” which may be regarded as a distributed

of (4. 31):
T
tit, ™ - [ p(t-0) L(t, o)de

analog
)(T) = Gty ) -
0

(t, T) = (qj Q(t)

<

2a
£(t, 0) + u(t)

=S

Substituting this expression in (4.44) we have

<
t(t,2) - [ P(2Z-0) L(t,0)do
0
whence, renaming fhe variable of integration,
> 2
t(t,2) = e " gt 0) + [ P(2-T) t(t, T)AT + u(t) (4.47)
0
To see how (4.45) transforms we observe that
_ 9ttty 8L(t,T)  ——
0 = th - o - p(T) L(t,0)
A T
g . BEL TR
=5 (L, ™ - [ Pr-e) Llt,o)do)
0
9 i )
-5 (L, - [ p(T-0) L(t,0)de) - P(T) L(t, 0)
0
BL(t, 1) [ aL(t, o) aL(t, )
o = i 22 - — + p(0) T
- fo p(T-g) —==do - === + p(0) L(t, T)
s
Op(T-o e
[ B oo - B0 Lt 0)
0
J - a =
Noting that —pg;ﬂ = - p(aTUU) and integrating by parts in the second
integral above we obtain
ot(t,o) 9t(t, o)
R

aL(t AL (t -
(L) 250, :fo e

from which we conclude that

29.




9t(t, Ty OL(t, T)
ot ) aT T Le fa)

Now (4.48) shows that ¢ is constant on lines t + T = ¢ (constant).

We may therefore write ¢ as {(t + 7) and (4.47) becomes
2
n 2a =
g(t+2) = 7" g(t) + [ p(2-7) (t+mydT + u(t) . (4.49)
0
This is a neutral delay equation which constitutes the control canonical
form for the system (4.13) (hence (4.1), (4.2)) . The distributed part of
o'kZ 20
the delay vanishes when B(x) =0 in (4.1) since e =e in that
case for all k and p (cf. (4.41)) is thus identically equal to zero.
This canonical form should be compared with (4. 32), (4. 33) of which it
is a distributed analog.

Just as the control canonical form for finite dimensional systems
enables one to see that eigenvalues of the closed loop system can be
placed at will by appropriate choice of the feedback vector k;':, the
canonical form just obtained can be used in a similar way with respect to
the system (4.13) (or, equivalently, (4.1), (4.2)).

Let us suppose that we determine the control u(t) by means of the

linear feedback law

u(t) = WZ("” , k Y (4. 50)
e (0, 1;E%)
where
k' 2 2 o
k = « Lo, IBET), k= ) Kk &,
2 =5 T
k j==9
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The closed loop system thus obtained involves addition of a "dyadic
1

operator" to the generator L(WZ) (cf. (4.8)):
w
1 1 1 1 I
d w w 0 1 0 w w w
ﬁ( 2) = Lk( Sl = (1 0) 5;( 2) + B(x) ( 2) + g(x) (( 2), k} . (4.5
w w w w w

Our next objective is to indicate how this closed loop system transforms

under the action of the mappings C and & above (cf. (4. 38), (4.46)).

In terms of the variables present in the system (4.13) it is clear

that the feedback law (4. 50) must take the form

o0
o —
CL(EY= e, Sl
(® =) k; w®)
]:_OC

and, by virtue of (4. 38), in terms of the variable Z of the control normal

form we have

o0
o i »
utty = Yk, g, e ¢(t, T)dT

From (4. 46) we then have
B, 2 G,(2=T)
ol e @ L(t, T)dr

e PRSI 2 % o.‘-]‘(2”.)
= ), k g | (9 e (™) L(t, T)dT
The following proposition is perhaps the most important and most diffi-

cult of the whole theory. We refer the reader to [95] or [96] for (two

different) proofs and more details.
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L EAE= )
Proposition 4. 1. (fb‘ e } b ) {‘Sl pj(Z-T) where pj is the

biothogonal function defined by (4.17) and 0<b < ﬁj <B, -®<j<»

The result stated in this proposition is precisely the analog of
the formula (4. 37) developed earlier for the finite dimensional case. In
addition this result shows that the map & 1is, except for a trivial change
of independent variable, the map used by N. Bari in her treatment of
Riesz bases (see discussion and reference in [66]).

We finally have, then,

0 2
uty= Y k.9, [ B.p(2-T) t(t, TdT
j:-:O J J 0 ) J
2 ————————
- f k (2-7) ¢(t, T)dT (4.52)
i
where
w e—
k (t) = 2-7) . .
4 j;w k9; By Ry2-7) (4. 53)

Consequently, in terms of the canonical variable ¢, the closed loop
system (4. 51) becomes (cf. (4.49))
2

L(te2) = 2% gty + [ (p(2-7) + k (2= L(temydr (4. 54)
0

We see, therefore, that the control canonical form has the property of
being invariant under feedback. A feedback relation (4. 50) just modifies

the kernel p(2-7) in the distributed delay term. It is this invariance

property which enables us to study how the spectrum of the closed loop
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system (4. 5]) can be modified when u obeys a feedback law (4. 50).

The main result is

Theorem 4.2. Let distinct complex numbers Py -0 < j <o, be selected

with the property

o, ~P, |2
J )

<o . (4. 55) !

oo
b
£J

j:-;{’

A

2
Then there is a feedback vector function k e L2 [0,1] for which the

closed loop system (4. 51) has precisely the eigenvalues pj :

Sketch of Proof. Consider a system (cf. (4.13))

d\:',
J = N =001 < < 00
a - P Yy :

having the desired pj as eigenvalues. Reducing this system to canonical

form one obtains (cf. (4.49))
2

2%+ [ aEem Lermyde

g(t+2) = e

where (cf. (4.41), (4.17))

j gl
e Gk(T) dT == 6j

To realize the pj as eigenvalues of the closed loop system (4. 51) it is

necessary and sufficient that
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p(2-T1) + kg(Z-T) = q(2-T)

Referring to (4. 52) we see that the question is whether or not there is a
0

2
sequence {k.} with Y Jk.|® <o such that
j s j
]__(Y)
o0
Y k, g, B, P(2-T) =q(2-7) - p(2-7)
£l M

With a rather simple calculation, which just involves the estimation of
the expansion coefficients of q(E?)_ with respect to the functions
pj(7-T) it is shown in [95] that this can be done if the inequality (4. 55)
is satisfied. The calculation does not show that (4. 55) is necessary but
it does indicate that no significant improvement is likely.

We have noted that in the case of boundary control ((4.21), (4.22),

(4.23)) the 8 (cf. (4.24)) are bounded and bounded away from zero.

j

It can be shown in this case that, by utilization of feedback relationships
of the form (4. 50), one can realize values pj, -0 < j <o, for the closed

loop system provided

o0

2
3, |0'j-Pj| <o, (4. 56)

j:-oo
In both cases, (4.55) and (4. 56), any finite subcollection of the points
of the spectrum can be moved at will. Indeed, the whole spectrum can

be moved "at will" in a sense. If one selects a sequence of disc
0 r 2

j

<& 00

neighborhoods Nj of radius r, centered at o, with V

e j J j= -0 gj
Ll
j:-oo

at will in the neighborhoods Nj

2
( ¥ |r l < o in the boundary control case) then the pj can be placed
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If, in addition to having boundary control, as in (4.21), (4.22),
(4.23), one likewise permits boundary feedback, e.g.
1

1 2
u(t) = o WLt + g, w (LY + (7, K, :
L ([Oyl];E )

We then obtain, as the closed loop system, (4.21),

1
1 Z
(@) -a) w(l,t) + (b =B w (1) = ("), k), X
w L ([0,1};E7) (4.57)
In this case one can change the "base point" o (cf. (4.9)) of the

spectrum to any other desired base point g and (4. 56) is replaced by

2
| <

o0
N y 5 3
Y ey - -t@-p)

J==00
Thus the asymptotic vertical line along which the spectrum is located
can be moved and then square summable changes in the Gj can be
carried out as well.

One of the outstanding problems remaining in this area is to extend
the notion of control canonical form from the very special class of dis-
tributed systems considered here to, first of all, higher dimensional hyper -
bolic systems and parabolic systems and, secondly, but even more
fundamentally, to a general abstract framework which will include a large
class of linear distributed parameter systems. While very little can be
said now about such a project it is safe to predict that the "control to
state map" C and the map ®, which we have seen relates a Riesz

basis to its dual basis, will remain important in the theory.
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5. BOUNDARY CONTROLLABILITY THEORY FOR HIGHER DIMENSIONAL
HYPERBOLIC SYSTEMS

In contrast with the relatively complete theory which we have seen
to exist for hyperbolic equations involving only a single space variable
x, confined to an interval 0 < x <1, the control and observation theory
for processes taking place in multi-dimensional regions is quite primitive.
This is due to the fact that the characteristic surfaces arising in such
problems are nowhere near as constructively useful as in the one dimen-
sional case. Nevertheless such theory as does exist does not lack
interest, as we shall point out.

Virtually the only multidimensional hyperbolic control process
which has received any attention is the scalar wave equation, which we
shall write here in the form

azw = i
PN — - ), 7 (e

] ow
at ]'_,j:]. ox

j):O, (5. 1)

9x
where p(x), aij(x) are real valued functions of class cz in the closure
of €, a bounded open connected set in Rn with piecewise smooth
(plus other conditions as required for existence, uniqueness, etc.)

boundary I . It is assumed that

p(x)3p0>0, Xe N, (5. 2)

2
(w, AGOw) > aOHW” w Eg U,

E E

(5. 3)

where A(x) is the n Xn symmetric matrix with entries a;(x) . The

condition (5. 3) is, of course, the familiar “uniform ellipticity" condition.
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We denote by v(x) the (almost everywhere defined and unique)

unit exterior normal to T" = 92 at xe I" . We assume TI" divided into

two parts

A A 3 roﬂr:;z{, (5.4)
with T“I non-empty and relatively open in T' . Also, unless explicitly

stated to the contrary, we will assume I'_ to have a non-empty in-

0

terior as well.

The idea now is that control will be exercised on I“1 while only

natural, passive constraints, in the form of boundary conditions, will

act on I‘O . This still leaves a number of possibilities for different
types of control application and different types of constraints. To

avoid inessential complication in this expository treatment we shall con-

sider only solutions w = w(x,t) of (5.1) for which

w(x,t) =0, Xe I“0 (5215
ow i =
(v(x), A(x) % (x, 1)) - u(x,t), xe 1"1 (5.6)

E

2
u being a scalar control function restricted to lie in L™ (", X [0, T]) for

1

any fixed T >0 . Thus, again, we are concerned with a "boundary

control".

It is by now an almost classical result that if one gives initial data

w(x,0) = w (X), Xe 2, w.e H(Q) (5.7)

0 0
ow m-1

- (X%, 0) = vo(x), X € Vo © H (2)

5 : (5. 8)
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m
(where H (@) is the usual Sobolev space [1]) and if appropriate consistency

conditions relating WO’ v to the boundary conditions (5.5), (5.6) are

0
met, then (5.1), (5.5), (5.6), (5.7), (5.8) has a unique generalized

) m m-1 : g
solution we ¢ ([0, ©); H (Q) & H (2)) in the case where u(x,t)=0.
When a simple matter to relate regularity of u to regularity of the solu-
tion w . An extensive treatment is presented in [58], [59]. A rather
simple and explicit (negative) example is provided by Graham in [33] for
the case where Q is the ball in Rn, px)=21 A =T, I‘l == o9,

2

I“0 = ¢ . There it is shown that controls ue L (I" 4 [0,T]) are capable

of producing states (w(:,T), v(*,T) (= La%(' , T))) which are not “finite
energy" states, i.e. do not lie in HI(Q) b HO(Q) . This "excessive"
effect of controls u might seem to promise rather strong controllability
results but, in fact, it leads to considerable difficulty in some theorems,
as we shall point out in Section 6.

The basic "approximate controllability" result appears in [88], [89] .
The approach was suggested to the author by J. L. Lions in a private
correspondence and takes the same form as a comparable result for the
heat equation proved in [57]. (More on this in the next section which
treats the heat equation). As is usually the case with theorems of this
type, it is proved in the context of the duality structure discussed in
Section 2.

Referring again to Figure 2.1 and the preceding material in Section 2,

we let




X=2= {{w, v)« Hl(sz) Ho(sz)lw(x) =0, Xe¢ r‘o} (5.9)

with the Hilbert space structure induced by Hl(sz) D HO(SZ) . The map

S: X =+ Z is defined for a fixed T >0 by

S(wg, Vo) = (W(,T), v(-,T) , (5. 10)

0
~ ~ )
w(,T), v(,T) (= _a_vtv_ (-, T)) being the state achieved at time t =T by

the generalize ' solution w, and its time derivative determined by (5.1),

(5.5), (5.6) (with u=0), (5.7) and (5.8) (with m =1). We let
¥ = L4r; x[0, T)
and define
Cu=(w(-,T), v(-,T) (5. 11
where w is the solution of (5.1), (5.5), (5.6) with

A

A A o
w(,0) =V(-,0) (== (-, 0))

i
(&)

(5.12)

We have remarked that we cannot be certain that (w (- L) ':\/(' , T e Z
for arbitrary u e LZ(I“l x[0,T]) . Hence C is, in general, an unbounded
operator, as anticipated in Section 2. We take the domain of C, 8(C) ,
to be the subspace of Y = LZ(I“1 x [0, T]) consisting of u for which

vt'(- 5 L)y \’}(- , T) does, indeed, lie in Z, as defined by (5.9) (note

that S and C are constructed just as in Section 3, but in that section
C was a bounded operator). We remark that the fact that ®(C) is dense

in Y follows from the fact (see [88], [59]) that §(C) contains all func-

o o}
tions ue ¢ (I“l x [0, T]) whose support is a closed subset of the interior

of T} x[o0,1].




Now let y = y(x,t) be a solution in Z of

2 n

9 9 i 5}
ol =F - ) = (ay(x) =) = 0 (5.13)

- e j el

ot 1, 1=l Bx ox

satisfying boundary conditions
¥x, ty = 0, xeFO (5.14)
dy

(v(x), AX) 5= (x,1) =0, xeT, (5.15)

We introduce the energy form on X = Z:

2 g 0
Bw(-,t), v(-,1) = 1 [ [pvix 0% + (G (5,1, AX) 2, 1) | Jix
E

Q
(5. 16)

and the related "energy inner product"
(W, 1), v(-,t); (v(-,t), 2z(-, t))>E

ow oy

= [ [p(®) v(x, 1) 2(x, 1) + (= (%, 1), AX) 5 (%,1) ]dx
ax ox n
9] E
: il . ; ow oy

for which «/2E 1is the associated norm. Letting w, v = 3t ¥ 2%

satisfy (5.1), (5.5), (5.6) and (5.13), (5.14), (5.15), respectively, a
formal computation (which can be justified, using, e.g., the methods in

[59]) shows that

(w(, T), v(-,T)); (v(*, T)y 2(, T))p - (W, 0), V(- 0)); (¥(+, 0), 2(+, O

A
:f f z(x, t) u(x, t)ds dt (5.17)

OI“1

==




where ds 1is the element of surface area on I’ .
If we now replace (w,v) by (v’\\/, v), the solution of (5.1), (5.5),

(5. 6) with v?l(-, o) = \’;(-,0) = 0, we find that (5.17) becomes

(G, (v, T, z(-,T)))E =4 (2

LY(r, x{o, Th(=Y) ,

1

which gives (C;r now being defined in terms of ( ,) E)

¢y, ™, 2, M) = 2 , (5.18)
I“lx[O, T]

18y C~ associates with the terminal state (y(- , Ty, 2(>, T)) the ob-

servation which is the restriction to I‘l x [0, T] of z(x,t) = g{i(x, 1 P
being the solution of (5.13), (5.14), (5.15) with the indicated terminal
state (y(*,T), z(-,T)) . The domain of (,‘* consists of those (y(+,T),
z(*T)) for which z e LZ(I‘1 X [0, T]) . (Note that the "trace theorem"

([1], [58]) only gives z e q([o’ T]; H

e
2

(l‘l))-)
If we let (w,v) be (;/;/, ;), the solution of (5.1), (5.5), (5.6),

(5.7), (5.8) with m=1, u=0, we find that

{S(w. v

o Vols (Y0, T, 20, D) & = wg, V)i (v(, 0), 2(, 0))

0" 0
so that
s“ v+, ), z(-,T) = (y(-, 0, z(-,0)) . (5. 19)

We should remark here that if I‘O has a non-empty interior the
energy norm «2E (cf. (5.16) ff.) is equivalent to the induced norm in

1 0
Z C H(Q) ®H (9 and Z, with this norm, is a Hilbert space i(l, :

9l

ren—




—

When 1 0 is empty, the important case wherein (5. 6) applies on all of

I 92, then the energy (5.16) vanishes for w = constant, v = 0 and

N2E is only a semi-norm. If, however, we identify states which differ

o |
|

by a state (c,0), c const int, then is a norm and the resulting

Hilbert space, which we shall still call ¥ ., 1is equivalent to the orthog-

L

0

]
onal complement of (c,0) in 2 C H () & H ($2) . These conventions

will be tacitly assumed in the sequel. In any event the adjoints g

2 |
C" are well defined, modulo these conventions, and if they are con- i
fused with the adjoints defined relative to the usual inner product in
1 i AT i .
H(Q) & H (@) little damage will result.
Approximate controllability of (5.1), (5.5), (5.6), i.e. of
* K -

{X, Y,Z,S,C}, isassured if we establish observability of {C S e
In the current context this means we should show:

. 2P y

Z =0 in L (T l><[0, T])
Ty x[0, T}
(5. 20)

e

=> S (y(-,T), 2(-,T)) = (v(+,0), 2(-,0)) =0 in ¥

If this is true then (5.1), (5.5), (5.6) is approximately controllable in

the sense that each initial state (wo VO) can be steered arbitrarily

close, in the energy norm, to the zero state at time T, using a control
2 , . e .

in L (FI X [0, T]) . However, since this system is time reversible, one

readily sees that this is equivalent to the question as to whether one can

steer from any state (WO’ vo) e Z to a state arbitrarily close to any other




(w., v.) € Z with respect to the topology of VE(: Z with the E norm,

P )

as noted earlier).
Let us stop and consider what (5.20) means. We are given a solu-

tion y = y(x,t) of (5.13), (5.14), (5.15). Condition (5.15) is

7~

3
(v(x), A(X)=L (x,t)) =0, xe O, 0<t<T
9x n 1 - -
E
while the premise of (5.20) is
oy :
z(x,t) = gt—(x,t) =0, Xe I‘l, bt <sT . (55.21)

If we differentiate (5.15), formally, with respect to t, we have, in its

place,
0z
(v(x), A(X)=— (x,t)) =0, xe T, 0<t<T. (5:.22)
2 ox n ’ i — i
B
" o
Now (5. 21), (5.22) constitute zero Cauchy data for the solution =z = a—ff

of (5.13) on T, X[0,]. The question is then seen to be one of unique-

1
ness; if these Cauchy data are zero is it true that the solution z is
zero?

The fact that the data (5. 21), (5.22) are given on the "time-like"

(cf. [} surface T x[0,T] does not permit us to use the usual existence

1
and regularity results for hyperbolic initial -boundary value
problems. However, our problem is not one that has been historically

neglected as it falls into a class of uniqueness problems studied by

Holmgren [40], John [43] and others. A strengthened and modernized

version of these uniqueness theories appears in Hormander's b
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